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ABSTRACT
Pneumonia is a respiratory condition characterized by inflammation of the alveolar sacs in the lungs, which disrupts normal 
oxygen exchange. This disease disproportionately impacts vulnerable populations, including young children (under five years 
of age) and elderly individuals (over 65 years), primarily due to their compromised immune systems. The mortality rate as-
sociated with pneumonia remains alarmingly high, particularly in low-resource settings where healthcare access is limited. 
Although effective prevention strategies exist, pneumonia continues to claim the lives of approximately one million children 
each year, earning its reputation as a “silent killer.” Globally, an estimated 500 million cases are documented annually, under-
scoring its widespread public health burden. This study explores the design and evaluation of the CNN-based Computer-Aid-
ed Diagnostic (CAD) systems with an aim of carrying out competent as well as resourceful classification and categorization 
of chest radiographs into binary classes (Normal, Pneumonia). An augmented Kaggle dataset of 18,200 chest radiographs, 
split between normal and pneumonia cases, was utilized. This study conducts a series of experiments to evaluate lightweight 
CNN models—ShuffleNet, NASNet-Mobile, and EfficientNet-b0—using transfer learning that achieved accuracy of 90%, 88% 
and 89%, prompting the task for deep feature extraction from each of the networks and applying feature fusion to further 
pair it with SVM classifier and XGBoost classifier, achieving an accuracy of 97% and 98% resepectively. The proposed research 
emphasizes the crucial role of CAD systems in advancing radiological diagnostics, delivering effective solutions to aid radiol-
ogists in distinguishing between diagnoses by applying feature fusion, feature selection along with various machine learning 
algorithms and deep learning architectures.
Keywords: Chest Radiographs, Feature Extraction, Feature Fusion, Lighweight CNN Network, ShuffleNet, NASNet-Mobile, 
EfficientNet-b0, SVM, XGBoost

INTRODUCTION
Pneumonia is an inflammatory respiratory condition triggered by 
pathogenic microorganisms, including bacterial agents like Strep-
tococcus pneumoniae, viral particles, or, in rare instances, fungal 
or parasitic organisms. The infection causes fluid accumulation 
in the alveoli, impairing gas exchange and leading to respirato-
ry distress. While it affects all age groups, immunocompromised 
populations—notably children under five years old and elderly 
adults over 65—face the highest mortality risk. Global health 
data reveals alarming statistics, with approximately 15 fatalities 

per 100,000 individuals annually, predominantly in low-resource 
settings where pediatric cases account for nearly one million 
preventable deaths each year. With over half a billion reported 
cases worldwide, pneumonia has earned the grim moniker “the 
silent killer” due to its insidious progression and diagnostic chal-
lenges. Although no universal cure exists, preventive measures 
like pneumococcal conjugate vaccines (PCV) and Haemophilus 
influenzae type b (Hib) immunizations have significantly reduced 
incidence rates. Despite these advances, lower respiratory in-
fections rank as the third-leading cause of death globally, with 
pneumonia representing the most severe subset. Accurate diag-
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nosis traditionally relies on chest X-ray analysis, yet even expe-
rienced radiologists may struggle to differentiate bacterial from 
viral etiologies, potentially delaying appropriate treatment. In re-
source-constrained regions, the scarcity of specialized healthcare 
professionals underscores the critical need for computer-aided 
detection (CAD) systems. Such technologies can augment diag-
nostic precision, facilitate early intervention, and ultimately re-
duce mortality rates by supporting clinical decision-making [1-3]. 
Deep learning is an advanced subset of artificial intelligence and 
machine learning that utilizes complex neural networks with 
multiple processing layers. These architectures are designed 
to replicate human cognitive functions by creating hierarchical 
data representations. By progressively analyzing raw input data 
through successive layers, deep learning models can identify 
and refine intricate patterns, closely mimicking human percep-
tual and analytical processes. Among these architectures, Con-
volutional Neural Networks (CNNs) are widely used for tasks like 
speech recognition and object detection. Typically, deep learning 
models are structured into input, hidden, and output layers, with 
each layer responsible for feature extraction and data transfor-
mation to support subsequent learning stages.
In healthcare, deep learning plays a pivotal role in medical imag-
ing by automating disease diagnosis through internal structure 
visualization. Imaging modalities such as X-rays, CT scans, and ul-
trasound generate vast datasets that can challenge manual inter-
pretation by radiologists. Deep learning streamlines this process, 
enabling rapid, precise, and scalable image analysis—key advan-
tages for timely diagnosis and improved patient management.

Figure 1: Illustrative represenatation of Chest radiographs (a) A 
Radiograph showing Normal chest, (b) A Radiograph showing 
Pneumonia Infected chest
Chest X-rays serve as a critical, non-invasive diagnostic tool for 
pulmonary and cardiac conditions, including pneumonia. While 
they involve lower radiation exposure than CT scans (which pro-
vide 3D imaging but require higher radiation doses and contrast 

agents), X-rays remain indispensable for detecting pneumo-
nia-specific features like pulmonary opacities. Deep learning en-
hances X-ray diagnostics by efficiently processing large imaging 
datasets, alleviating radiologists’ workloads, and boosting diag-
nostic precision. This integration of AI and healthcare facilitates 
earlier disease detection and optimizes clinical outcomes. Pneu-
monia, in particular, manifests radiologically as localized or lobar 
pulmonary opacities, which deep learning models can reliably 
identify.
Figure 1 (a) displays chest radiographs with a clean and trans-
parent lung portion hence representig normal chest, whereas 
Figure 1 (b) shows chest radiographs with clouded airspace or 
a radio opaque lung section, clearly representing lungs infected 
with pneuonia.

LITERATURE REVIEW
The review of many Computer-Aided Diagnostic (CAD) systems 
established throughout the eons by researchers for 2-class cat-
egorization as well as multiple class classification of chest radio-
graphs has been expanded in the following sections.

Computer-Aided Diagnostic (CAD) system de-
signs for Chest Radiographs with focus on Ma-
chine Learning based algorithms
Recent advancements in medical image analysis have demon-
strated the effectiveness of machine learning techniques for 
pneumonia detection in chest X-rays. Chandra and Verma 
(2020) [26] proposed an innovative approach leveraging lung 
region-of-interest (ROI) segmentation to improve classification 
accuracy between normal and pneumonia cases. Their compar-
ative analysis revealed that segmentation significantly enhanced 
performance across classifiers, with logistic regression achieving 
the highest accuracy (95.63%) when using ROI-based processing, 
compared to 91.50% without segmentation. Other classifiers like 
multi-layer perceptron (95.38%) and random forest (94.41%) also 
showed notable improvements with segmentation.
Further supporting these findings, Al Mamlook et al. (2020) [27] 
reported even higher accuracy rates, with random forest reach-
ing 97.61% and CNN achieving 98.46%, underscoring the poten-
tial of deep learning in this domain. Earlier studies by Oliveira et 
al. (2008) [28] and Sousa et al. (2013) [29] explored traditional 
machine learning methods, with Oliveira employing Haar wavelet 
transforms for feature extraction in a k-NN classifier, while Sousa 
compared SVM (77%), k-NN (70%), and Naïve Bayes (68%), lat-
er improving results using dimensionality reduction techniques 
like kernel-PCA. Depeursinge et al. (2010) [30] and Yao et al. 
(2011) [31] further validated SVM’s utility, reporting accuracies 
of 88.30% and 80.00%, respectively. Naydenova et al. (2015) [32] 
advanced this work by integrating feature selection with ensem-
ble methods, achieving 97.80% accuracy using a hybrid random 
forest-SVM approach.
Recent studies have introduced more sophisticated techniques. 
For instance, Ahmed et al. (2023) [121] combined EfficientNetV2 
with XGBoost, achieving 95.2% accuracy while emphasizing mod-
el interpretability through SHAP values. Similarly, Gupta et al. 
(2024) [124] proposed a lightweight MobileNetV3-XGBoost pipe-
line for tuberculosis detection, attaining 92.8% accuracy with re-
duced computational costs—a critical consideration for clinical 
deployment. Notably, Tseng and Tang (2023) [123] optimized XG-
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Boost with feature selection for brain tumor detection, demon-
strating its versatility beyond pulmonary diseases.
While prior research predominantly relied on SVM and basic clas-
sifiers. The current study addresses this gap by integrating fea-
ture fusion with SVM and XGBoost, combining the strengths of 
traditional and ensemble methods. This approach not only builds 
on existing segmentation and feature extraction strategies but 
also leverages XGBoost’s superior handling of imbalanced medi-
cal data, as evidenced by recent hybrid models [121-124].

Computer-Aided Diagnostic (CAD) system de-
signs for Chest Radiographs with focus on Deep 
Learning based CNN networks
Recent advances in deep learning have revolutionized comput-
er-aided diagnosis (CAD) systems for pulmonary conditions. Zech 
et al. (2018) [2] pioneered a robust classification framework using 
DenseNet121 with softmax classifier, validating their approach 
on a comprehensive multi-institutional dataset from NIH, Mount 
Sinai, and Indiana University networks. This multicenter study 
demonstrated exceptional generalization capabilities, setting a 
benchmark for subsequent research. Parallel work by Mubarok 
et al. (2019) [7] developed an assistive diagnostic system achiev-
ing 85.60% accuracy with ResNet50, though Mask R-CNN showed 
slightly lower performance (78.06%).
Contemporary studies have pushed accuracy boundaries further. 
Rahman et al. (2020) [8] conducted extensive evaluations across 
four architectures, with DenseNet201 (98.00%) outperforming 
ResNet18 (96.40%) and SqueezeNet (96.10%). These findings 
were corroborated by Elasnaoui and Chawki (2020a) [15], whose 
comparative analysis of nine architectures revealed MobileNetV2 
(96.27%) and ResNet50 (96.61%) as top performers. The field has 
particularly benefited from benchmark datasets like Kermany et 
al. (2018) [11]’s Kaggle collection (5,856 images), which enabled 
their InceptionV3 model to achieve 92.08% accuracy.
Recent innovations have introduced novel architectural modifi-
cations. Liang and Zeng (2020) [20] addressed critical overfitting 
challenges through residual structures and dilated convolutions, 
while Togacar et al. (2019) [4] demonstrated exceptional perfor-
mance (99.41% accuracy) combining mRMR feature selection 
with LDA classification. The trend toward lightweight models is 
evident in Chandola et al. (2021) [103]’s work, where Mobile-
NetV2 achieved 94% accuracy, improving to 95% with decision 
fusion.
While existing studies show promise, three key limitations 
emerge, most systems focus on binary classification that have 
limited exploration of feature fusion techniques. Khan et al. 
(2022) [126] developed a triple-attention CNN with 98.6% accu-
racy for pediatric pneumonia. Our current work introduces nov-
el feature fusion mechanisms combining radiomic features with 
deep learning embeddings. The evolution from basic CNNs to 
sophisticated hybrid systems demonstrates remarkable progress, 
yet opportunities remain for improving generalizability across di-
verse populations and clinical settings.

Proposed CAD System Design for Chest Radio-
graphs
The proposed Computer-Aided Diagnostic (CAD) system for pneu-
monia detection in chest X-rays employs a multi-stage pipeline 
beginning with dataset acquisition, resizing, and augmentation 

to ensure robust model training. It explores two complementary 
approaches: 
•	 Lightweight end-to-end CNNs (ShuffleNet, NASNet-Mobile, 

EfficientNet-b0) CAD system design
•	 Hybrid CNN-ML CAD system designs where pre-trained net-

works (ShuffleNet, NASNet-Mobile, EfficientNet-b0) extract 
features for classifiers like SVM and XGBoost

The proposed work involves a sequence of experiments that 
also involve uniquely integrating feature across multiple models 
(ShuffleNet, NASNet-Mobile, EfficientNet-b0) to enhance reliabil-
ity, while SVM and XGBoost visualizations provide interpretability 
for clinical trust. Designed for both high accuracy and scalability, 
it addresses key gaps in existing systems—balancing computa-
tional efficiency (critical for low-resource settings) with diagnos-
tic precision, ultimately aiming to reduce radiologist workload 
and improve early pneumonia detection through automated, ex-
plainable AI. The Figure 2 shows the Illustrative representation of 
the flow of the proposed work.

Figure 2: Illustrative Representation of the flow of Proposed work

Dataset Description
The experimental dataset for this study was obtained from the 
publicly available Kaggle repository originally curated by Ker-
many et al. [38,42]. For balanced experimental evaluation, we 
utilized a subset of 200 annotated chest X-ray images, with pre-
cisely 100 samples representing normal pulmonary cases and 
100 demonstrating radiographic evidence of pneumonia. This 
carefully selected 1:1 class ratio ensures equitable representa-
tion of both diagnostic categories in our analytical framework. 
The dataset’s public accessibility facilitates reproducibility while 
its clinically validated annotations provide reliable ground truth 
for model training and validation. For the proposed work the im-
ages are downsized while maintaining their aspect ratio in order 
to maintain the lung form. Both normal and pneumonia chest ra-
diographs are subjected to the identical enhancement strategies 
in this investigation. The training dataset is expanded to 18,100 
radiographs from its original 100 images. First, each image un-
dergoes translation and rotation following a horizontal and ver-
tical flip of these translated and rotated radiographs. A total of 
181 images are created by augmenting each image. The research 
employs a systematic data partitioning strategy, segmenting the 
complete dataset into three mutually exclusive groups: training, 
validation, and test sets. The division process begins with ran-
dom allocation of 50% of the original images to the test set. The 
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remaining half is then subjected to augmentation procedures 
designed to maintain balanced representation between normal 
and pathological cases. From this augmented pool, a stratified 
10% sample is extracted to serve as the validation set. Notably, 
both original images and their augmented counterparts are con-
sistently assigned to identical subsets throughout this partition-
ing process, preserving data integrity and preventing information 
leakage between sets.

Lightweight Deep Learning based CNN Networks
In modern medicine, Computer-Aided Diagnostic (CAD) systems 
utilizing Convolutional Neural Networks (CNNs) have become 
essential, particularly in medical imaging analysis [28-40]. CNNs 
employ a structured, multi-layered design to identify complex 
patterns within visual data. These layers—comprising Convo-
lution, Activation, Pooling, Fully Connected, and Softmax—use 
specialized filters to detect spatial or temporal relationships in 
images [52-54]. CNNs acquire the ability to recognize local or 
global features that aid in picture classification during training. 
To achieve optimal performance in specific tasks, CNNs can be 
trained effectively using various approaches. One such meth-
od is transfer learning, where pre-trained weights from a base 
network (initially trained on a source dataset) are applied to a 
target network, enabling quicker adaptation to a new dataset. 
Another technique is fine-tuning, which involves modifying the 
parameters of a pre-trained model to suit a different dataset. 
However, this approach is less frequently utilized in medical im-
age analysis because of the limited availability of extensive data-
sets. Additionally, training the CNN from scratch is another viable 
option for obtaining tailored results. It can take days or weeks 
to train a CNN from scratch, especially when dealing with huge 
datasets. This can be somewhat alleviated using pre-trained net-
works, trained on huge benchmark datasets such as ImageNet 
[25-27]. In proposed work, transfer learning is applied, utilizing a 
pre-existing lightweight CNN model for the 2-class classification 
of chest radiographs. 

ShuffleNet
ShuffleNet, introduced by Xiangyu Zhang et al., [116] in the paper 
titled “ShuffleNet: An Extremely Efficient Convolutional Neural 
Network for Mobile Devices” is precisely understood as a light-
weight CNN model specifically designed for mobile devices that 
lack or have limited resources primarily for computation purpos-
es. The chief goal of ShuffleNet is to achieve high efficiency in re-
gards of the two critical aspects which are namely computational 
cost (FLOPs) and memory usage, which are essential for mobile 
platforms. To accomplish this, ShuffleNet uses pointwise group 
convolution, which progresses by splitting the standard convo-
lution into two convolution operations: depthwise convolution, 
where each channel that deals with the input is convolved sep-
arately, and pointwise convolution, which employs the 1x1 filter 
that combines the results. The network is designed to balance 
performance with efficiency, making it apt for real-time applica-
tions especially on mobile devices. By improving group convo-
lutions and channel shuffling, ShuffleNet significantly reduces 
both memory usage and computational requirements, making it 
a lightweight and fast framework. 

NASNet-Mobile
NASNet-Mobile, as given by the researchers Barret Zoph et al. 
[117], in the paper titled “Learning Transferable Architectures 

for Scalable Image Recognition” is a CNN architecture designed 
through NAS with a focus on scalability, efficiency, and transfer-
ability across various tasks. NAS is a search process carried out 
automatically over a large search space to find the most effective 
architecture by using techniques of reinforcement learning to 
evolve the neural networks toward performing well for specific 
tasks. Thus, NASNet-Mobile was designed as a highly efficient ar-
chitecture for constrained computational resources and memory 
on a mobile device.
The core notion behind NASNet-Mobile is the use of convolu-
tional layers along with operations that result in maximization 
of performance while bringing down the computation cost. Such 
architecture would include a stack of cells since cells are defined 
as the primary building blocks to be optimized for the best com-
promise between accuracy and efficiency for a task like image 
classification. NASNet-Mobile is a condensed version of NASNet 
architecture developed specifically for a mobile platform. NAS-
Net-Mobile employs reduced kernel sizes with refined operation-
al methods to achieve quite impressive performance for mobile 
devices endowed with limited computing power.
EfficientNet-b0
EfficientNet-B0, as it is described by Mingxing Tan and Quoc V. 
Le within the paper titled “EfficientNet: Rethinking Model Scal-
ing for Convolutional Neural Networks” [118], has been devel-
oped among the EfficientNet family of models to balance good 
performance with computing efficiency. EfficiencyNet-B0 is the 
smallest architecture that provides a baseline scale for other de-
veloped EfficientNet variants. The key idea of EfficientNet is the 
process that scales the dimensions of the network in terms of 
depth of the network, width of the network, and resolution of a 
network all at an even rate with one another, thereby improving 
both at the same time.
Instead of just simply scaling the complexity of the network in 
terms of enhancing the depth of the network (by adding more 
layers) or increasing the width (by adding more neurons per lay-
er), as usual in traditional scaling methods, EfficientNet practices 
the application of a compound scaling method where all three 
dimensions, namely, depth of the network, width of the network, 
and resolution of the network, are scaled in such a manner that 
the network grows in a harmonious manner with the prime aim 
to maintain optimal balance between the three essential dimen-
sions rather than scaling one in a way to degrade the rest. 

Machine Learning Algorithm
Support Vector Machine (SVM)
Support Vector Machines (SVM) represent a powerful supervised 
learning methodology widely applied to both classification and 
regression tasks in machine learning. The algorithm’s fundamen-
tal principle revolves around constructing an optimal decision 
boundary that maximizes the separation margin between dis-
tinct classes, thereby enhancing generalization performance on 
unseen data. This maximum-margin classifier operates by iden-
tifying support vectors - the most critical data points that define 
the boundary between classes. For complex, non-linear data-
sets where linear separation is impossible in the original feature 
space, SVM employs sophisticated kernel functions to implicitly 
map the input data into higher-dimensional spaces where linear 
separation becomes achievable. Commonly used kernel func-
tions include the Radial Basis Function (RBF), polynomial, and 
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sigmoid kernels, each offering unique advantages for different 
data characteristics [84,103,109]. SVMs demonstrate particular 
strength in high-dimensional spaces and cases where the num-
ber of dimensions exceeds the number of samples, making them 
well-suited for medical imaging applications. Additionally, their 
inherent resistance to overfitting, especially when combined 
with appropriate regularization, contributes to reliable perfor-
mance across diverse datasets. The algorithm’s mathematical 
foundation in statistical learning theory provides strong theoret-
ical guarantees about its generalization capabilities, further re-
inforcing its popularity in both academic research and practical 
implementations.

XGBoost
XGBoost (eXtreme Gradient Boosting) represents a powerful 
advancement in machine learning, employing an ensemble ap-
proach that builds upon gradient-boosted decision trees [119-
121]. This algorithm operates through an iterative process where 
successive decision trees are constructed to rectify the residual 
errors of preceding models, progressively refining predictions 
through gradient descent optimization. A distinctive characteris-
tic of XGBoost lies in its sophisticated regularization framework, 
incorporating both L1 (Lasso) and L2 (Ridge) penalties to con-
trol model complexity and prevent overfitting - a critical feature 
when working with medical imaging data where generalization 
is paramount. The implementation efficiently leverages parallel 
computing capabilities to accelerate model training while main-
taining computational resource efficiency. Notably, XGBoost in-
corporates native functionality to handle missing values intelli-
gently, automatically learning appropriate imputation strategies 
during the training process. These combined attributes - regu-
larization, parallelization, and robust data handling - render XG-
Boost particularly effective for processing large-scale datasets 
while maintaining model interpretability. The algorithm’s inher-
ent scalability allows it to accommodate diverse data types and 
sizes without compromising performance, making it adaptable to 
various problem domains. Furthermore, XGBoost includes built-
in cross-validation support and early stopping mechanisms, en-
abling automated optimization of training iterations to maximize 
predictive accuracy while preventing unnecessary computation. 
This combination of technical features has established XGBoost 
as a preferred choice for competitive machine learning applica-
tions and real-world implementations where both accuracy and 
efficiency are prioritized. The algorithm’s flexibility extends to 
supporting various objective functions and evaluation metrics, 
allowing customization for specific use cases such as medical di-
agnosis tasks [120-126].

Feature Extraction
Feature extraction essentially deals with the vital task of extract-
ing and mining substantially noteworthy information from the 
input image dataset. One major issue is that many variables are 
needed to effectively describe extracted features in huge data-
sets, this need of large amount of variable tends to be expensive 
in terms of both cost and computation time. Learning-based tech-
niques or manual methods can be used for feature extraction. 
The proposed work focuses on extraction of deep features from 
the average pool layer of the three (ShuffleNet, NASNet-Mobile, 
EfficientNet-b0) pre-trained lightweight networks. A total of 544 
features from ShuffleNet, 1056 features from NASNet-Mobile 

and 1280 features from EfficientNet-b0 are extracted from the 
average pooling layer of each lighweight CNN model.

Feature Fusion
Feature fusion is the process of combining discriminative fea-
tures extracted from multiple sources such as different neural 
networks, layers, or modalities to create a more robust, general-
ized, and informative representation for machine learning tasks 
such as classification, detection, or segmentation. The common 
techniques of feature fusion include:
•	 Concatenation: Stacking features end-to-end to preserve all 

original information.
•	 Element-wise Sum/Average: Merging features by adding or 

averaging values at each dimension.
•	 Attention-based Fusion: Weighting features dynamically 

based on their importance for adaptive integration.
The choice of fusion method depends on the task—concatena-
tion for complementary features, sum/average for structurally 
similar features, and attention mechanisms for prioritizing crit-
ical features—with each method offering unique advantages in 
balancing information retention and model complexity. In pro-
posed work this technique leverages the strengths of different 
feature extractors, such as the Global Average Pooling (GAP) 
layers from multiple CNNs like ShuffleNet, NASNet-Mobile, and 
EfficientNet-b0, to enhance model performance by integrating 
complementary information. The proposed work deals with deep 
feature extraction from each model followed by the concatena-
tion based feature fusion to form a ultimate deep feature set of 
2880 features.

Feature Selection
The act of distilling an initial big quantity of unprocessed and 
unanalysed data into a highy controlled, practicable, useful, and 
smaller subset of features is poularly called as the task of feature 
selection. These chosen features are frequently many, and man-
aging sizable feature sets necessitates a variety of factors. This 
is addressed by feature selection, which lowers the number of 
variables required by limiting the feature set. The keywords Fea-
ture selection and feature dimensionality reduction are the two 
popularly used techiques to describe the these essential tasks 
of selecting a useful subsection of features from the original set 
of features or combining features to create new ones that are 
more useful anf filled with information respectively. Here, the 
only goal is to create a renewed feature set that accurately re-
flect the original dataset or is close to the original set as much as 
possible. Feature selection approaches include two categories of 
strategies namely, filter-based and wrapper-based strategies. Fil-
ter-based techniques are more commonly utilized, including chi-
squared tests, box plots, and correlation-based feature selection. 
Although wrapper-based techniques need a significant amount 
of computation, model-based genetic algorithms, such as GA-
SVM or GA-kNN, are utilized. Among the various feature selec-
tion techniques the proposed work focuses on correlation-based 
feature selection. The deep feature set of a total of 2880 fea-
tures formed after fetaure fusion further undergoes corelation 
based feature selection resulting in a reduced feature set of 266 
features. The popularly used feature selection techniques are 
shown in Figure 3.

Chandola Y, et al

© Under License of Creative Commons Attribution 4.0 License



Figure 3: Feature selection methods

Experiments
Figure 4 Illustrates the experimental procedure pf the proposed 
work for classifying chest radiographs into normal and pneumo-
nia classes. 

Figure 4: Experimental procedure used in proposed work
The experiments conducted in the proposed work of lightweight 
CNN-based deep feature extraction, feature fusion CAD system 
design for chest radiographs are briefly described in Table 1. 
Table 1: Overview of the Conducted Experiments in the Proposed 
Study

Experiment Description

Experiment 1 Design of CAD system using pre-
trained Light Weight ShuffleNet 
CNN model

Experiment 2 Design of CAD system using 
pre-trained Light Weight NAS-
Net-Mobile CNN model

Experiment 3 Design of CAD system using pre-
trained Light Weight Efficient-
Net-b0 CNN model

Experiment 4 Design of CAD system using 
Deep feature extraction by Light 
Weight CNN models along with 
and Feature fusion and SVM 
Classifier

Experiment 5 Design of CAD system using 
Deep feature extraction by Light 
Weight CNN models along with 
and Feature fusion and XGBoost 
Classifier

Experiment 1: Design of CAD system using pre-trained Light 
Weight ShuffleNet CNN model
This study focuses on developing a computer-aided diagnosis 
(CAD) system based on a pre-trained lightweight ShuffleNet CNN 
architecture. To improve classification accuracy, the model was 
trained on an augmented dataset of chest X-ray images. The per-
formance of this CAD system, designed for binary classification of 
chest radiographs, is presented in Table 2.
Table 2: Performance evaluation of lightweight pre-trained Shuf-
fleNet CNN model

Net-
work/
Classi-
fier

Confusion Matrix Accura-
cy (%)

Individual Class 
Accuracy (%)

Normal Pneu-
monia

Shuf-
fleNet/
Soft-
max

Normal Pneu-
monia

90 96 84

Normal 48 2

Pneu-
monia

8 42

Experiment 2: Design of CAD system using pre-trained Light 
Weight NASNet-Mobile CNN model
This study focuses on developing a computer-aided diagnosis 
(CAD) system based on the pre-trained lightweight NASNet-Mo-
bile convolutional neural network (CNN). To improve classifica-
tion accuracy, the model was trained on an augmented dataset 
of chest X-ray images. The performance of this CAD system, de-
signed for binary classification of chest radiographs, is presented 
in Table 3.
Table 3: Performance evaluation of lightweight pre-trained NAS-
Net-Mobile CNN model

Net-
work/
Classi-
fier

Confusion Matrix Accura-
cy (%)

Individual Class 
Accuracy (%)

Normal Pneu-
monia

NASNet 
Mobile/ 
Soft-
max

Normal Pneu-
monia

88 100 76

Normal 50 0

Pneu-
monia

12 38

Experiment 3: Design of CAD system using pre-trained Light 
Weight EfficientNet-b0 CNN model
This study focuses on developing a computer-aided diagnosis 
(CAD) system based on the pre-trained lightweight Efficient-
Net-B0 convolutional neural network (CNN). The model was 
trained on an augmented dataset of chest X-ray images to im-
prove classification accuracy. Table 4 presents the performance 
metrics of the CAD system in binary classification of chest radio-
graphs using the EfficientNet-B0 architecture.
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Table 4: Performance evaluation of lightweight pre-trained Effi-
cientNet-b0 CNN model

Net-
work/
Classi-
fier

Confusion Matrix Accura-
cy (%)

Individual Class 
Accuracy (%)

Normal Pneu-
monia

Effi-
cient-
Net-b0/
Soft-
max

Normal Pneu-
monia

89 100 78

Normal 50 0

Pneu-
monia

11 39

Experiment 4: Design of CAD system using Deep feature ex-
traction by Light Weight CNN models along with Feature fusion 
and SVM Classifier
This study focuses on developing a computer-aided diagnosis 
(CAD) system by applying deep feature extraction on the models 
trained from experiment 1 to 3. A total of 544 features from Shuf-
fleNet, 1056 features from NASNet-Mobile and 1280 features 
from EfficientNet-b0 are extracted from the average pooling 
layer of each lighweight CNN model resulting in a deep feature 
set of a total of 2880 features i.e DFS = 2880, which further un-
dergoes corelation based feature selection resulting in a reduced 
feature set of 266 features, i.e RFS = 266. Table 4.5 presents the 
performance evaluation results of the CAD system implemented 
using Deep feature extraction by Light Weight CNN models along 
with Feature fusion and SVM Classifier.
Table 5: Performance Evaluation of CAD System Designed Using 
Deep feature extraction by Light Weight CNN models along with 
Feature fusion and SVM Classifier

Net-
work/
Classi-
fier

Confusion Matrix Accura-
cy (%)

Individual Class 
Accuracy (%)

Normal Pneu-
monia

Shuf-
fleNet + 
NAS-
NetMo-
bile + 
Effi-
cient-
Net-b0 
/ SVM

Normal Pneu-
monia

97 96 98

Normal 48 2

Pneu-
monia

1 49

Experiment 5: Design of CAD system using Deep feature ex-
traction by Light Weight CNN models along with Feature fusion 
and XGBoost Classifier
This study focuses on developing a computer-aided diagnosis 
(CAD) system by applying deep feature extraction on the models 
trained from experiment 1 to 3. From each lightweight CNN mod-
els average pooling layer the features are extracted resulting in a 
DFS of 2880 features, which further undergoes corelation based 
feature selection resulting in a RFS of 266 features. The results of 
performance evaluation of the CAD system designed using Deep 
feature extraction by Light Weight CNN models along with Fea-
ture fusion and XGBoost Classifier is shown in Table 6.
Table 6: Performance Evaluation of CAD System Designed Using 
Deep feature extraction by Light Weight CNN models along with 
Feature fusion and XGBoost Classifier

Net-
work/
Classi-
fier

Confusion Matrix Accura-
cy (%)

Individual Class 
Accuracy (%)

Normal Pneu-
monia

Shuf-
fleNet + 
NASNe-
Mobile 
+ Effi-
cient-
Net-b0 
/ XG-
Boost

Normal Pneu-
monia

98 98 98

Normal 49 1

Pneu-
monia

1 49

RESULT & DISCUSSIONS
The comparative evaluation demonstrates that while individual 

Chandola Y, et al

© Under License of Creative Commons Attribution 4.0 License

S. No. Experiment Network/Classifier Accuracy (%) ICA_Normal (%) ICA_Pneumonia (%)

1 Design of CAD system 
using pre-trained 
Light Weight ShuffleN-
et CNN model

ShuffleNet/Softmax 90.00 96.00 84.00

2 Design of CAD 
system using pre-
trained Light Weight 
NASNet-Mobile CNN 
model

NASNet-Mobile /
Softmax

88.00 100.00 76.00

3 Design of CAD system 
using pre-trained 
Light Weight Efficient-
Net-b0 CNN model

EfficientNet-b0 /
Softmax

89.00 100.00 78.00

4 Design of CAD system 
using Deep feature 
extraction by Light 
Weight CNN models 
along with Feature 
fusion and SVM 
Classifier

ShuffleNet + NAS-
Net-Mobile + Effi-
cientNet-b0/SVM

97.00 96.00 98.00
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5 Design of CAD system 
using Deep feature 
extraction by Light 
Weight CNN models 
along with Feature 
fusion and XGBoost 
Classifier

ShuffleNet + NAS-
Net-Mobile + Effi-
cientNet-b0/XGBoost

98.00 98.00 98.00

Note: ICA_Normal: Individual Class Accuracy for Normal Class, ICA_Pneumonia: Individual Class Accuracy for Pneumonia Class

lightweight CNN model ShuffleNet with 90% accuracy achieve 
respectable performance, the highest diagnostic efficacy is at-
tained through feature fusion of multiple CNNs ShuffleNet + NAS-
Net-Mobile + EfficientNet-b0 combined with XGBoost, achieving 
98% balanced accuracy with 98% for both Normal and Pneu-
monia classes. This hybrid approach outperforms single-model 
CNNs and SVM-based fusion with 97% accuracy, highlighting that 
integrating complementary deep features with ensemble classi-
fiers optimally balances sensitivity which deals with Pneumonia 
class detection and specificity which deals with Normal class 
identification, making it the most clinically reliable CAD system 
for chest X-ray classification. 
The results emphasize the superiority of feature diversity and 
XGBoost’s discriminative power in medical image analysis. These 
results align with prior studies emphasizing the role of feature 
optimization in improving CAD system performance [101-115]. 
However, the current work advances the field by integrating 
lightweight CNNs with statistical feature selection and feature 
extraction, offering a balance between accuracy and efficiency 
as shown in Table 7.
Table 7: Comparative Evaluation of CAD System Implementations 
for Binary Classification of Chest X-ray Images
The Figure 5 illustrateds the ROC curve with its corresponding 
AUC values for the CAD system designed in the proposed work.

Figure 5: The ROC curve with its corresponding AUC values for 
the CAD system designed in the proposed work

CONCLUSION
This study presented an efficient Computer-Aided Diagnosis sys-
tem for pneumonia detection using chest X-ray images, leverag-
ing the lightweight CNN models as deep feature extractors then 
further applying feature fusion and corelation based feature 

selection along with SVM classifier as well as XGBoost classifier. 
The experimental results demonstrated that the proposed mod-
el of CAD system using Deep feature extraction by Light Weight 
CNN models along with Feature fusion and XGBoost Classifier 
achieved 98% classification accuracy, highlighting its potential for 
accurate and rapid medical image analysis.
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